Metamath Proof Explorer


Definition df-mpaa

Description: Define the minimal polynomial of an algebraic number as the unique monic polynomial which achieves the minimum of degAA . (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion df-mpaa minPoly𝔸=x𝔸ιpPoly|degp=deg𝔸xpx=0coeffpdeg𝔸x=1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpaa classminPoly𝔸
1 vx setvarx
2 caa class𝔸
3 vp setvarp
4 cply classPoly
5 cq class
6 5 4 cfv classPoly
7 cdgr classdeg
8 3 cv setvarp
9 8 7 cfv classdegp
10 cdgraa classdeg𝔸
11 1 cv setvarx
12 11 10 cfv classdeg𝔸x
13 9 12 wceq wffdegp=deg𝔸x
14 11 8 cfv classpx
15 cc0 class0
16 14 15 wceq wffpx=0
17 ccoe classcoeff
18 8 17 cfv classcoeffp
19 12 18 cfv classcoeffpdeg𝔸x
20 c1 class1
21 19 20 wceq wffcoeffpdeg𝔸x=1
22 13 16 21 w3a wffdegp=deg𝔸xpx=0coeffpdeg𝔸x=1
23 22 3 6 crio classιpPoly|degp=deg𝔸xpx=0coeffpdeg𝔸x=1
24 1 2 23 cmpt classx𝔸ιpPoly|degp=deg𝔸xpx=0coeffpdeg𝔸x=1
25 0 24 wceq wffminPoly𝔸=x𝔸ιpPoly|degp=deg𝔸xpx=0coeffpdeg𝔸x=1