Metamath Proof Explorer


Theorem mpaaroot

Description: The minimal polynomial of an algebraic number has the number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaaroot A𝔸minPoly𝔸AA=0

Proof

Step Hyp Ref Expression
1 mpaalem A𝔸minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1
2 simpr2 minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1minPoly𝔸AA=0
3 1 2 syl A𝔸minPoly𝔸AA=0