Metamath Proof Explorer


Theorem mpoeq3dva

Description: Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013)

Ref Expression
Hypothesis mpoeq3dva.1 φ x A y B C = D
Assertion mpoeq3dva φ x A , y B C = x A , y B D

Proof

Step Hyp Ref Expression
1 mpoeq3dva.1 φ x A y B C = D
2 1 3expb φ x A y B C = D
3 2 eqeq2d φ x A y B z = C z = D
4 3 pm5.32da φ x A y B z = C x A y B z = D
5 4 oprabbidv φ x y z | x A y B z = C = x y z | x A y B z = D
6 df-mpo x A , y B C = x y z | x A y B z = C
7 df-mpo x A , y B D = x y z | x A y B z = D
8 5 6 7 3eqtr4g φ x A , y B C = x A , y B D