Metamath Proof Explorer


Theorem mpofrlmd

Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses mpofrlmd.f F=RfreeLModN×M
mpofrlmd.v V=BaseF
mpofrlmd.s i=aj=bA=B
mpofrlmd.a φiNjMAX
mpofrlmd.b φaNbMBY
mpofrlmd.e φNUMWZV
Assertion mpofrlmd φZ=aN,bMBiNjMiZj=A

Proof

Step Hyp Ref Expression
1 mpofrlmd.f F=RfreeLModN×M
2 mpofrlmd.v V=BaseF
3 mpofrlmd.s i=aj=bA=B
4 mpofrlmd.a φiNjMAX
5 mpofrlmd.b φaNbMBY
6 mpofrlmd.e φNUMWZV
7 xpexg NUMWN×MV
8 7 anim1i NUMWZVN×MVZV
9 8 3impa NUMWZVN×MVZV
10 6 9 syl φN×MVZV
11 eqid BaseR=BaseR
12 1 11 2 frlmbasf N×MVZVZ:N×MBaseR
13 ffn Z:N×MBaseRZFnN×M
14 10 12 13 3syl φZFnN×M
15 14 3 4 5 fnmpoovd φZ=aN,bMBiNjMiZj=A