Metamath Proof Explorer


Theorem mpoxopoveqd

Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)

Ref Expression
Hypotheses mpoxopoveq.f F = x V , y 1 st x n 1 st x | φ
mpoxopoveqd.1 ψ V X W Y
mpoxopoveqd.2 ψ ¬ K V n V | [˙ V W / x]˙ [˙K / y]˙ φ =
Assertion mpoxopoveqd ψ V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f F = x V , y 1 st x n 1 st x | φ
2 mpoxopoveqd.1 ψ V X W Y
3 mpoxopoveqd.2 ψ ¬ K V n V | [˙ V W / x]˙ [˙K / y]˙ φ =
4 1 mpoxopoveq V X W Y K V V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ
5 4 ex V X W Y K V V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ
6 5 2 syl11 K V ψ V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ
7 df-nel K V ¬ K V
8 1 mpoxopynvov0 K V V W F K =
9 7 8 sylbir ¬ K V V W F K =
10 9 adantr ¬ K V ψ V W F K =
11 3 eqcomd ψ ¬ K V = n V | [˙ V W / x]˙ [˙K / y]˙ φ
12 11 ancoms ¬ K V ψ = n V | [˙ V W / x]˙ [˙K / y]˙ φ
13 10 12 eqtrd ¬ K V ψ V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ
14 13 ex ¬ K V ψ V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ
15 6 14 pm2.61i ψ V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ