Metamath Proof Explorer


Theorem mpoxopoveqd

Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)

Ref Expression
Hypotheses mpoxopoveq.f F=xV,y1stxn1stx|φ
mpoxopoveqd.1 ψVXWY
mpoxopoveqd.2 ψ¬KVnV|[˙VW/x]˙[˙K/y]˙φ=
Assertion mpoxopoveqd ψVWFK=nV|[˙VW/x]˙[˙K/y]˙φ

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f F=xV,y1stxn1stx|φ
2 mpoxopoveqd.1 ψVXWY
3 mpoxopoveqd.2 ψ¬KVnV|[˙VW/x]˙[˙K/y]˙φ=
4 1 mpoxopoveq VXWYKVVWFK=nV|[˙VW/x]˙[˙K/y]˙φ
5 4 ex VXWYKVVWFK=nV|[˙VW/x]˙[˙K/y]˙φ
6 5 2 syl11 KVψVWFK=nV|[˙VW/x]˙[˙K/y]˙φ
7 df-nel KV¬KV
8 1 mpoxopynvov0 KVVWFK=
9 7 8 sylbir ¬KVVWFK=
10 9 adantr ¬KVψVWFK=
11 3 eqcomd ψ¬KV=nV|[˙VW/x]˙[˙K/y]˙φ
12 11 ancoms ¬KVψ=nV|[˙VW/x]˙[˙K/y]˙φ
13 10 12 eqtrd ¬KVψVWFK=nV|[˙VW/x]˙[˙K/y]˙φ
14 13 ex ¬KVψVWFK=nV|[˙VW/x]˙[˙K/y]˙φ
15 6 14 pm2.61i ψVWFK=nV|[˙VW/x]˙[˙K/y]˙φ