Metamath Proof Explorer


Theorem mpteq1dfOLD

Description: Obsolete version of mpteq1df as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq1df.1 x φ
mpteq1df.2 φ A = B
Assertion mpteq1dfOLD φ x A C = x B C

Proof

Step Hyp Ref Expression
1 mpteq1df.1 x φ
2 mpteq1df.2 φ A = B
3 1 2 alrimi φ x A = B
4 eqid C = C
5 4 rgenw x A C = C
6 mpteq12f x A = B x A C = C x A C = x B C
7 3 5 6 sylancl φ x A C = x B C