Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
mpteq1dfOLD
Metamath Proof Explorer
Description: Obsolete version of mpteq1df as of 11-Nov-2024. (Contributed by Glauco Siliprandi , 23-Oct-2021) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mpteq1df.1
⊢ Ⅎ x φ
mpteq1df.2
⊢ φ → A = B
Assertion
mpteq1dfOLD
⊢ φ → x ∈ A ⟼ C = x ∈ B ⟼ C
Proof
Step
Hyp
Ref
Expression
1
mpteq1df.1
⊢ Ⅎ x φ
2
mpteq1df.2
⊢ φ → A = B
3
1 2
alrimi
⊢ φ → ∀ x A = B
4
eqid
⊢ C = C
5
4
rgenw
⊢ ∀ x ∈ A C = C
6
mpteq12f
⊢ ∀ x A = B ∧ ∀ x ∈ A C = C → x ∈ A ⟼ C = x ∈ B ⟼ C
7
3 5 6
sylancl
⊢ φ → x ∈ A ⟼ C = x ∈ B ⟼ C