Metamath Proof Explorer


Theorem mpteq2dvaOLD

Description: Obsolete version of mpteq2dva as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpteq2dva.1 φxAB=C
Assertion mpteq2dvaOLD φxAB=xAC

Proof

Step Hyp Ref Expression
1 mpteq2dva.1 φxAB=C
2 nfv xφ
3 2 1 mpteq2da φxAB=xAC