Metamath Proof Explorer


Theorem mptssid

Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mptssid.1 _xA
mptssid.2 C=xA|BV
Assertion mptssid xAB=xCB

Proof

Step Hyp Ref Expression
1 mptssid.1 _xA
2 mptssid.2 C=xA|BV
3 eqvisset y=BBV
4 3 anim2i xAy=BxABV
5 rabid xxA|BVxABV
6 4 5 sylibr xAy=BxxA|BV
7 6 2 eleqtrrdi xAy=BxC
8 simpr xAy=By=B
9 7 8 jca xAy=BxCy=B
10 1 ssrab2f xA|BVA
11 2 10 eqsstri CA
12 11 sseli xCxA
13 12 anim1i xCy=BxAy=B
14 9 13 impbii xAy=BxCy=B
15 14 opabbii xy|xAy=B=xy|xCy=B
16 df-mpt xAB=xy|xAy=B
17 df-mpt xCB=xy|xCy=B
18 15 16 17 3eqtr4i xAB=xCB