Metamath Proof Explorer


Theorem mrccl

Description: The Moore closure of a set is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrccl CMooreXUXFUC

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 1 mrcf CMooreXF:𝒫XC
3 2 adantr CMooreXUXF:𝒫XC
4 mre1cl CMooreXXC
5 elpw2g XCU𝒫XUX
6 4 5 syl CMooreXU𝒫XUX
7 6 biimpar CMooreXUXU𝒫X
8 3 7 ffvelcdmd CMooreXUXFUC