Metamath Proof Explorer


Theorem mrclsp

Description: Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses mrclsp.u U=LSubSpW
mrclsp.k K=LSpanW
mrclsp.f F=mrClsU
Assertion mrclsp WLModK=F

Proof

Step Hyp Ref Expression
1 mrclsp.u U=LSubSpW
2 mrclsp.k K=LSpanW
3 mrclsp.f F=mrClsU
4 eqid BaseW=BaseW
5 4 1 2 lspfval WLModK=a𝒫BaseWbU|ab
6 4 1 lssmre WLModUMooreBaseW
7 3 mrcfval UMooreBaseWF=a𝒫BaseWbU|ab
8 6 7 syl WLModF=a𝒫BaseWbU|ab
9 5 8 eqtr4d WLModK=F