Metamath Proof Explorer


Theorem mrcrsp

Description: Moore closure generalizes ideal span. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses mrcrsp.u U=LIdealR
mrcrsp.k K=RSpanR
mrcrsp.f F=mrClsU
Assertion mrcrsp RRingK=F

Proof

Step Hyp Ref Expression
1 mrcrsp.u U=LIdealR
2 mrcrsp.k K=RSpanR
3 mrcrsp.f F=mrClsU
4 rlmlmod RRingringLModRLMod
5 lidlval LIdealR=LSubSpringLModR
6 1 5 eqtri U=LSubSpringLModR
7 rspval RSpanR=LSpanringLModR
8 2 7 eqtri K=LSpanringLModR
9 6 8 3 mrclsp ringLModRLModK=F
10 4 9 syl RRingK=F