Metamath Proof Explorer


Theorem msf

Description: The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses msf.x X=BaseM
msf.d D=distMX×X
Assertion msf MMetSpD:X×X

Proof

Step Hyp Ref Expression
1 msf.x X=BaseM
2 msf.d D=distMX×X
3 1 2 msmet MMetSpDMetX
4 metf DMetXD:X×X
5 3 4 syl MMetSpD:X×X