Database BASIC TOPOLOGY Metric spaces Open sets of a metric space msf  
				
		 
		
			
		 
		Theorem msf  
		Description:   The distance function of a metric space is a function into the real
       numbers.  (Contributed by NM , 30-Aug-2006)   (Revised by Mario Carneiro , 12-Nov-2013) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						msf.x   ⊢   X  =  Base  M      
					 
					
						msf.d   ⊢   D  =    dist  ⁡  M   ↾    X  ×  X        
					 
				
					Assertion 
					msf    ⊢   M  ∈  MetSp    →   D  :   X  ×  X    ⟶   ℝ          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							msf.x  ⊢   X  =  Base  M      
						
							2 
								
							 
							msf.d  ⊢   D  =    dist  ⁡  M   ↾    X  ×  X        
						
							3 
								1  2 
							 
							msmet   ⊢   M  ∈  MetSp    →   D  ∈   Met  ⁡  X          
						
							4 
								
							 
							metf   ⊢   D  ∈   Met  ⁡  X     →   D  :   X  ×  X    ⟶   ℝ          
						
							5 
								3  4 
							 
							syl   ⊢   M  ∈  MetSp    →   D  :   X  ×  X    ⟶   ℝ