Metamath Proof Explorer


Theorem msmet

Description: The distance function, suitably truncated, is a metric on X . (Contributed by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypotheses msf.x X=BaseM
msf.d D=distMX×X
Assertion msmet MMetSpDMetX

Proof

Step Hyp Ref Expression
1 msf.x X=BaseM
2 msf.d D=distMX×X
3 eqid TopOpenM=TopOpenM
4 3 1 2 isms2 MMetSpDMetXTopOpenM=MetOpenD
5 4 simplbi MMetSpDMetX