Metamath Proof Explorer


Theorem mstaval

Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mstaval.r R=mStRedT
mstaval.s S=mStatT
Assertion mstaval S=ranR

Proof

Step Hyp Ref Expression
1 mstaval.r R=mStRedT
2 mstaval.s S=mStatT
3 fveq2 t=TmStRedt=mStRedT
4 3 1 eqtr4di t=TmStRedt=R
5 4 rneqd t=TranmStRedt=ranR
6 df-msta mStat=tVranmStRedt
7 1 fvexi RV
8 7 rnex ranRV
9 5 6 8 fvmpt TVmStatT=ranR
10 rn0 ran=
11 10 eqcomi =ran
12 fvprc ¬TVmStatT=
13 fvprc ¬TVmStRedT=
14 1 13 eqtrid ¬TVR=
15 14 rneqd ¬TVranR=ran
16 11 12 15 3eqtr4a ¬TVmStatT=ranR
17 9 16 pm2.61i mStatT=ranR
18 2 17 eqtri S=ranR