Metamath Proof Explorer


Theorem mstopn

Description: The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses isms.j J=TopOpenK
isms.x X=BaseK
isms.d D=distKX×X
Assertion mstopn KMetSpJ=MetOpenD

Proof

Step Hyp Ref Expression
1 isms.j J=TopOpenK
2 isms.x X=BaseK
3 isms.d D=distKX×X
4 1 2 3 isms2 KMetSpDMetXJ=MetOpenD
5 4 simprbi KMetSpJ=MetOpenD