Metamath Proof Explorer


Theorem mstri2

Description: Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x X=BaseM
mscl.d D=distM
Assertion mstri2 MMetSpCXAXBXADBCDA+CDB

Proof

Step Hyp Ref Expression
1 mscl.x X=BaseM
2 mscl.d D=distM
3 1 2 msmet2 MMetSpDX×XMetX
4 mettri2 DX×XMetXCXAXBXADX×XBCDX×XA+CDX×XB
5 3 4 sylan MMetSpCXAXBXADX×XBCDX×XA+CDX×XB
6 simpr2 MMetSpCXAXBXAX
7 simpr3 MMetSpCXAXBXBX
8 6 7 ovresd MMetSpCXAXBXADX×XB=ADB
9 simpr1 MMetSpCXAXBXCX
10 9 6 ovresd MMetSpCXAXBXCDX×XA=CDA
11 9 7 ovresd MMetSpCXAXBXCDX×XB=CDB
12 10 11 oveq12d MMetSpCXAXBXCDX×XA+CDX×XB=CDA+CDB
13 5 8 12 3brtr3d MMetSpCXAXBXADBCDA+CDB