Metamath Proof Explorer


Theorem mthmb

Description: If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmb.r R=mStRedT
mthmb.u U=mThmT
Assertion mthmb RX=RYXUYU

Proof

Step Hyp Ref Expression
1 mthmb.r R=mStRedT
2 mthmb.u U=mThmT
3 1 2 mthmblem RX=RYXUYU
4 1 2 mthmblem RY=RXYUXU
5 4 eqcoms RX=RYYUXU
6 3 5 impbid RX=RYXUYU