| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 | 2 | mul02d |  | 
						
							| 4 | 3 | eqeq2d |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | 0cnd |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 6 7 2 8 | mulcan2d |  | 
						
							| 10 | 4 9 | bitr3d |  | 
						
							| 11 | 10 | biimpd |  | 
						
							| 12 | 11 | impancom |  | 
						
							| 13 | 12 | necon1bd |  | 
						
							| 14 | 13 | orrd |  | 
						
							| 15 | 14 | ex |  | 
						
							| 16 | 1 | mul02d |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | eqeq1d |  | 
						
							| 19 | 16 18 | syl5ibrcom |  | 
						
							| 20 | 5 | mul01d |  | 
						
							| 21 |  | oveq2 |  | 
						
							| 22 | 21 | eqeq1d |  | 
						
							| 23 | 20 22 | syl5ibrcom |  | 
						
							| 24 | 19 23 | jaod |  | 
						
							| 25 | 15 24 | impbid |  |