Metamath Proof Explorer


Theorem mul12

Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion mul12 ABCABC=BAC

Proof

Step Hyp Ref Expression
1 mulcom ABAB=BA
2 1 oveq1d ABABC=BAC
3 2 3adant3 ABCABC=BAC
4 mulass ABCABC=ABC
5 mulass BACBAC=BAC
6 5 3com12 ABCBAC=BAC
7 3 4 6 3eqtr3d ABCABC=BAC