Metamath Proof Explorer


Theorem mul32

Description: Commutative/associative law. (Contributed by NM, 8-Oct-1999)

Ref Expression
Assertion mul32 ABCABC=ACB

Proof

Step Hyp Ref Expression
1 mulcom BCBC=CB
2 1 oveq2d BCABC=ACB
3 2 3adant1 ABCABC=ACB
4 mulass ABCABC=ABC
5 mulass ACBACB=ACB
6 5 3com23 ABCACB=ACB
7 3 4 6 3eqtr4d ABCABC=ACB