Metamath Proof Explorer


Theorem mullt0

Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009)

Ref Expression
Assertion mullt0 AA<0BB<00<AB

Proof

Step Hyp Ref Expression
1 renegcl AA
2 1 adantr AA<0A
3 lt0neg1 AA<00<A
4 3 biimpa AA<00<A
5 2 4 jca AA<0A0<A
6 renegcl BB
7 6 adantr BB<0B
8 lt0neg1 BB<00<B
9 8 biimpa BB<00<B
10 7 9 jca BB<0B0<B
11 mulgt0 A0<AB0<B0<AB
12 5 10 11 syl2an AA<0BB<00<AB
13 recn AA
14 recn BB
15 mul2neg ABAB=AB
16 13 14 15 syl2an ABAB=AB
17 16 ad2ant2r AA<0BB<0AB=AB
18 12 17 breqtrd AA<0BB<00<AB