Metamath Proof Explorer


Theorem mulvfn

Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfn ACBDAvBFn

Proof

Step Hyp Ref Expression
1 ovex ABxV
2 eqid xABx=xABx
3 1 2 fnmpti xABxFn
4 mulvval ACBDAvB=xABx
5 4 fneq1d ACBDAvBFnxABxFn
6 3 5 mpbiri ACBDAvBFn