Metamath Proof Explorer


Theorem mulvfn

Description: Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvfn A C B D A v B Fn

Proof

Step Hyp Ref Expression
1 ovex A B x V
2 eqid x A B x = x A B x
3 1 2 fnmpti x A B x Fn
4 mulvval A C B D A v B = x A B x
5 4 fneq1d A C B D A v B Fn x A B x Fn
6 3 5 mpbiri A C B D A v B Fn