Metamath Proof Explorer


Theorem mulvval

Description: Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion mulvval A C B D A v B = v A B v

Proof

Step Hyp Ref Expression
1 elex A C A V
2 elex B D B V
3 fveq1 y = B y v = B v
4 oveq12 x = A y v = B v x y v = A B v
5 3 4 sylan2 x = A y = B x y v = A B v
6 5 mpteq2dv x = A y = B v x y v = v A B v
7 df-mulv v = x V , y V v x y v
8 reex V
9 8 mptex v A B v V
10 6 7 9 ovmpoa A V B V A v B = v A B v
11 1 2 10 syl2an A C B D A v B = v A B v