Metamath Proof Explorer


Theorem n0

Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. (Contributed by NM, 29-Sep-2006) Avoid ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion n0 AxxA

Proof

Step Hyp Ref Expression
1 df-ne A¬A=
2 neq0 ¬A=xxA
3 1 2 bitri AxxA