Metamath Proof Explorer


Theorem naddf

Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025)

Ref Expression
Assertion naddf Could not format assertion : No typesetting found for |- +no : ( On X. On ) --> On with typecode |-

Proof

Step Hyp Ref Expression
1 naddfn Could not format +no Fn ( On X. On ) : No typesetting found for |- +no Fn ( On X. On ) with typecode |-
2 naddcl Could not format ( ( y e. On /\ z e. On ) -> ( y +no z ) e. On ) : No typesetting found for |- ( ( y e. On /\ z e. On ) -> ( y +no z ) e. On ) with typecode |-
3 2 rgen2 Could not format A. y e. On A. z e. On ( y +no z ) e. On : No typesetting found for |- A. y e. On A. z e. On ( y +no z ) e. On with typecode |-
4 fveq2 Could not format ( x = <. y , z >. -> ( +no ` x ) = ( +no ` <. y , z >. ) ) : No typesetting found for |- ( x = <. y , z >. -> ( +no ` x ) = ( +no ` <. y , z >. ) ) with typecode |-
5 df-ov Could not format ( y +no z ) = ( +no ` <. y , z >. ) : No typesetting found for |- ( y +no z ) = ( +no ` <. y , z >. ) with typecode |-
6 4 5 eqtr4di Could not format ( x = <. y , z >. -> ( +no ` x ) = ( y +no z ) ) : No typesetting found for |- ( x = <. y , z >. -> ( +no ` x ) = ( y +no z ) ) with typecode |-
7 6 eleq1d Could not format ( x = <. y , z >. -> ( ( +no ` x ) e. On <-> ( y +no z ) e. On ) ) : No typesetting found for |- ( x = <. y , z >. -> ( ( +no ` x ) e. On <-> ( y +no z ) e. On ) ) with typecode |-
8 7 ralxp Could not format ( A. x e. ( On X. On ) ( +no ` x ) e. On <-> A. y e. On A. z e. On ( y +no z ) e. On ) : No typesetting found for |- ( A. x e. ( On X. On ) ( +no ` x ) e. On <-> A. y e. On A. z e. On ( y +no z ) e. On ) with typecode |-
9 3 8 mpbir Could not format A. x e. ( On X. On ) ( +no ` x ) e. On : No typesetting found for |- A. x e. ( On X. On ) ( +no ` x ) e. On with typecode |-
10 ffnfv Could not format ( +no : ( On X. On ) --> On <-> ( +no Fn ( On X. On ) /\ A. x e. ( On X. On ) ( +no ` x ) e. On ) ) : No typesetting found for |- ( +no : ( On X. On ) --> On <-> ( +no Fn ( On X. On ) /\ A. x e. ( On X. On ) ( +no ` x ) e. On ) ) with typecode |-
11 1 9 10 mpbir2an Could not format +no : ( On X. On ) --> On : No typesetting found for |- +no : ( On X. On ) --> On with typecode |-