Metamath Proof Explorer


Theorem nanbi

Description: Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion nanbi φψφψφφψψ

Proof

Step Hyp Ref Expression
1 dfbi3 φψφψ¬φ¬ψ
2 df-or φψ¬φ¬ψ¬φψ¬φ¬ψ
3 df-nan φψ¬φψ
4 3 bicomi ¬φψφψ
5 nannot ¬φφφ
6 nannot ¬ψψψ
7 5 6 anbi12i ¬φ¬ψφφψψ
8 4 7 imbi12i ¬φψ¬φ¬ψφψφφψψ
9 1 2 8 3bitri φψφψφφψψ
10 nannan φψφφψψφψφφψψ
11 9 10 bitr4i φψφψφφψψ