Metamath Proof Explorer


Theorem nandsym1

Description: A symmetry with -/\ .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion nandsym1 ψψψφ

Proof

Step Hyp Ref Expression
1 df-nan ψψ¬ψψ
2 1 biimpi ψψ¬ψψ
3 df-nan ψ¬ψ
4 3 anbi2i ψψψ¬ψ
5 2 4 sylnib ψψ¬ψ¬ψ
6 simpl ψφψ
7 fal ¬
8 7 intnan ¬ψ
9 6 8 jctir ψφψ¬ψ
10 5 9 nsyl ψψ¬ψφ
11 df-nan ψφ¬ψφ
12 10 11 sylibr ψψψφ