Metamath Proof Explorer


Theorem nandsym1

Description: A symmetry with -/\ .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion nandsym1 ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-nan ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) ↔ ¬ ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) )
2 1 biimpi ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) )
3 df-nan ( ( 𝜓 ⊼ ⊥ ) ↔ ¬ ( 𝜓 ∧ ⊥ ) )
4 3 anbi2i ( ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) ↔ ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) )
5 2 4 sylnib ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) )
6 simpl ( ( 𝜓𝜑 ) → 𝜓 )
7 fal ¬ ⊥
8 7 intnan ¬ ( 𝜓 ∧ ⊥ )
9 6 8 jctir ( ( 𝜓𝜑 ) → ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) )
10 5 9 nsyl ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓𝜑 ) )
11 df-nan ( ( 𝜓𝜑 ) ↔ ¬ ( 𝜓𝜑 ) )
12 10 11 sylibr ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ( 𝜓𝜑 ) )