Description: A symmetry with -/\ .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nandsym1 | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ( 𝜓 ⊼ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) ↔ ¬ ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) ) | |
2 | 1 | biimpi | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) ) |
3 | df-nan | ⊢ ( ( 𝜓 ⊼ ⊥ ) ↔ ¬ ( 𝜓 ∧ ⊥ ) ) | |
4 | 3 | anbi2i | ⊢ ( ( 𝜓 ∧ ( 𝜓 ⊼ ⊥ ) ) ↔ ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) ) |
5 | 2 4 | sylnib | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) ) |
6 | simpl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜓 ) | |
7 | fal | ⊢ ¬ ⊥ | |
8 | 7 | intnan | ⊢ ¬ ( 𝜓 ∧ ⊥ ) |
9 | 6 8 | jctir | ⊢ ( ( 𝜓 ∧ 𝜑 ) → ( 𝜓 ∧ ¬ ( 𝜓 ∧ ⊥ ) ) ) |
10 | 5 9 | nsyl | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ¬ ( 𝜓 ∧ 𝜑 ) ) |
11 | df-nan | ⊢ ( ( 𝜓 ⊼ 𝜑 ) ↔ ¬ ( 𝜓 ∧ 𝜑 ) ) | |
12 | 10 11 | sylibr | ⊢ ( ( 𝜓 ⊼ ( 𝜓 ⊼ ⊥ ) ) → ( 𝜓 ⊼ 𝜑 ) ) |