Description: A symmetry with -/\ .
See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nandsym1 | |- ( ( ps -/\ ( ps -/\ F. ) ) -> ( ps -/\ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nan | |- ( ( ps -/\ ( ps -/\ F. ) ) <-> -. ( ps /\ ( ps -/\ F. ) ) ) |
|
2 | 1 | biimpi | |- ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ ( ps -/\ F. ) ) ) |
3 | df-nan | |- ( ( ps -/\ F. ) <-> -. ( ps /\ F. ) ) |
|
4 | 3 | anbi2i | |- ( ( ps /\ ( ps -/\ F. ) ) <-> ( ps /\ -. ( ps /\ F. ) ) ) |
5 | 2 4 | sylnib | |- ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ -. ( ps /\ F. ) ) ) |
6 | simpl | |- ( ( ps /\ ph ) -> ps ) |
|
7 | fal | |- -. F. |
|
8 | 7 | intnan | |- -. ( ps /\ F. ) |
9 | 6 8 | jctir | |- ( ( ps /\ ph ) -> ( ps /\ -. ( ps /\ F. ) ) ) |
10 | 5 9 | nsyl | |- ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ ph ) ) |
11 | df-nan | |- ( ( ps -/\ ph ) <-> -. ( ps /\ ph ) ) |
|
12 | 10 11 | sylibr | |- ( ( ps -/\ ( ps -/\ F. ) ) -> ( ps -/\ ph ) ) |