Metamath Proof Explorer


Theorem nandsym1

Description: A symmetry with -/\ .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion nandsym1
|- ( ( ps -/\ ( ps -/\ F. ) ) -> ( ps -/\ ph ) )

Proof

Step Hyp Ref Expression
1 df-nan
 |-  ( ( ps -/\ ( ps -/\ F. ) ) <-> -. ( ps /\ ( ps -/\ F. ) ) )
2 1 biimpi
 |-  ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ ( ps -/\ F. ) ) )
3 df-nan
 |-  ( ( ps -/\ F. ) <-> -. ( ps /\ F. ) )
4 3 anbi2i
 |-  ( ( ps /\ ( ps -/\ F. ) ) <-> ( ps /\ -. ( ps /\ F. ) ) )
5 2 4 sylnib
 |-  ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ -. ( ps /\ F. ) ) )
6 simpl
 |-  ( ( ps /\ ph ) -> ps )
7 fal
 |-  -. F.
8 7 intnan
 |-  -. ( ps /\ F. )
9 6 8 jctir
 |-  ( ( ps /\ ph ) -> ( ps /\ -. ( ps /\ F. ) ) )
10 5 9 nsyl
 |-  ( ( ps -/\ ( ps -/\ F. ) ) -> -. ( ps /\ ph ) )
11 df-nan
 |-  ( ( ps -/\ ph ) <-> -. ( ps /\ ph ) )
12 10 11 sylibr
 |-  ( ( ps -/\ ( ps -/\ F. ) ) -> ( ps -/\ ph ) )