Metamath Proof Explorer


Theorem nanorxor

Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020)

Ref Expression
Assertion nanorxor φψφψφψ

Proof

Step Hyp Ref Expression
1 df-nan φψ¬φψ
2 xor2 φψφψ¬φψ
3 2 rbaibr ¬φψφψφψ
4 2 bibi2i φψφψφψφψ¬φψ
5 pm4.71 φψ¬φψφψφψ¬φψ
6 simpl φψφ
7 6 orcd φψφψ
8 7 con3i ¬φψ¬φψ
9 id ¬φψ¬φψ
10 8 9 ja φψ¬φψ¬φψ
11 5 10 sylbir φψφψ¬φψ¬φψ
12 4 11 sylbi φψφψ¬φψ
13 3 12 impbii ¬φψφψφψ
14 1 13 bitri φψφψφψ