Metamath Proof Explorer


Theorem natffn

Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypothesis natrcl.1 N=CNatD
Assertion natffn NFnCFuncD×CFuncD

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 eqid BaseC=BaseC
3 eqid HomC=HomC
4 eqid HomD=HomD
5 eqid compD=compD
6 1 2 3 4 5 natfval N=fCFuncD,gCFuncD1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseChxHomCyayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyax
7 ovex rxHomDsxV
8 7 rgenw xBaseCrxHomDsxV
9 ixpexg xBaseCrxHomDsxVxBaseCrxHomDsxV
10 8 9 ax-mp xBaseCrxHomDsxV
11 10 rabex axBaseCrxHomDsx|xBaseCyBaseChxHomCyayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyaxV
12 11 csbex 1stg/saxBaseCrxHomDsx|xBaseCyBaseChxHomCyayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyaxV
13 12 csbex 1stf/r1stg/saxBaseCrxHomDsx|xBaseCyBaseChxHomCyayrxrycompDsyx2ndfyh=x2ndgyhrxsxcompDsyaxV
14 6 13 fnmpoi NFnCFuncD×CFuncD