Metamath Proof Explorer


Theorem natfn

Description: A natural transformation is a function on the objects of C . (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N=CNatD
natixp.2 φAFGNKL
natixp.b B=BaseC
Assertion natfn φAFnB

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 natixp.2 φAFGNKL
3 natixp.b B=BaseC
4 eqid HomD=HomD
5 1 2 3 4 natixp φAxBFxHomDKx
6 ixpfn AxBFxHomDKxAFnB
7 5 6 syl φAFnB