Metamath Proof Explorer


Theorem natoppf2

Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses natoppf.o O = oppCat C
natoppf.p P = oppCat D
natoppf.n N = C Nat D
natoppf.m M = O Nat P
natoppfb.k No typesetting found for |- ( ph -> K = ( oppFunc ` F ) ) with typecode |-
natoppfb.l No typesetting found for |- ( ph -> L = ( oppFunc ` G ) ) with typecode |-
natoppf2.a φ A F N G
Assertion natoppf2 φ A L M K

Proof

Step Hyp Ref Expression
1 natoppf.o O = oppCat C
2 natoppf.p P = oppCat D
3 natoppf.n N = C Nat D
4 natoppf.m M = O Nat P
5 natoppfb.k Could not format ( ph -> K = ( oppFunc ` F ) ) : No typesetting found for |- ( ph -> K = ( oppFunc ` F ) ) with typecode |-
6 natoppfb.l Could not format ( ph -> L = ( oppFunc ` G ) ) : No typesetting found for |- ( ph -> L = ( oppFunc ` G ) ) with typecode |-
7 natoppf2.a φ A F N G
8 3 7 nat1st2nd φ A 1 st F 2 nd F N 1 st G 2 nd G
9 1 2 3 4 8 natoppf φ A 1 st G tpos 2 nd G M 1 st F tpos 2 nd F
10 3 natrcl A F N G F C Func D G C Func D
11 10 simprd A F N G G C Func D
12 oppfval2 Could not format ( G e. ( C Func D ) -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) : No typesetting found for |- ( G e. ( C Func D ) -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) with typecode |-
13 7 11 12 3syl Could not format ( ph -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) : No typesetting found for |- ( ph -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) with typecode |-
14 6 13 eqtrd φ L = 1 st G tpos 2 nd G
15 10 simpld A F N G F C Func D
16 oppfval2 Could not format ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
17 7 15 16 3syl Could not format ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) with typecode |-
18 5 17 eqtrd φ K = 1 st F tpos 2 nd F
19 14 18 oveq12d φ L M K = 1 st G tpos 2 nd G M 1 st F tpos 2 nd F
20 9 19 eleqtrrd φ A L M K