Metamath Proof Explorer


Theorem nbgrsym

Description: In a graph, the neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 27-Oct-2020) (Revised by AV, 12-Feb-2022)

Ref Expression
Assertion nbgrsym NGNeighbVtxKKGNeighbVtxN

Proof

Step Hyp Ref Expression
1 ancom NVtxGKVtxGKVtxGNVtxG
2 necom NKKN
3 prcom KN=NK
4 3 sseq1i KNeNKe
5 4 rexbii eEdgGKNeeEdgGNKe
6 1 2 5 3anbi123i NVtxGKVtxGNKeEdgGKNeKVtxGNVtxGKNeEdgGNKe
7 eqid VtxG=VtxG
8 eqid EdgG=EdgG
9 7 8 nbgrel NGNeighbVtxKNVtxGKVtxGNKeEdgGKNe
10 7 8 nbgrel KGNeighbVtxNKVtxGNVtxGKNeEdgGNKe
11 6 9 10 3bitr4i NGNeighbVtxKKGNeighbVtxN