Metamath Proof Explorer


Theorem nbupgrres

Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because N , K and M could be connected by one edge, so M is a neighbor of K in the original graph, but not in the restricted graph, because the edge between M and K , also incident with N , was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 8-Nov-2020)

Ref Expression
Hypotheses nbupgrres.v V = Vtx G
nbupgrres.e E = Edg G
nbupgrres.f F = e E | N e
nbupgrres.s S = V N I F
Assertion nbupgrres G UPGraph N V K V N M V N K M G NeighbVtx K M S NeighbVtx K

Proof

Step Hyp Ref Expression
1 nbupgrres.v V = Vtx G
2 nbupgrres.e E = Edg G
3 nbupgrres.f F = e E | N e
4 nbupgrres.s S = V N I F
5 simp1l G UPGraph N V K V N M V N K G UPGraph
6 eldifi K V N K V
7 6 3ad2ant2 G UPGraph N V K V N M V N K K V
8 eldifsn M V N K M V N M K
9 eldifi M V N M V
10 9 anim1i M V N M K M V M K
11 8 10 sylbi M V N K M V M K
12 difpr V N K = V N K
13 11 12 eleq2s M V N K M V M K
14 13 3ad2ant3 G UPGraph N V K V N M V N K M V M K
15 1 2 nbupgrel G UPGraph K V M V M K M G NeighbVtx K M K E
16 5 7 14 15 syl21anc G UPGraph N V K V N M V N K M G NeighbVtx K M K E
17 16 biimpa G UPGraph N V K V N M V N K M G NeighbVtx K M K E
18 12 eleq2i M V N K M V N K
19 eldifsn M V N M V M N
20 19 anbi1i M V N M K M V M N M K
21 18 8 20 3bitri M V N K M V M N M K
22 simpr M V M N M N
23 22 necomd M V M N N M
24 23 adantr M V M N M K N M
25 21 24 sylbi M V N K N M
26 25 3ad2ant3 G UPGraph N V K V N M V N K N M
27 eldifsn K V N K V K N
28 simpr K V K N K N
29 28 necomd K V K N N K
30 27 29 sylbi K V N N K
31 30 3ad2ant2 G UPGraph N V K V N M V N K N K
32 26 31 nelprd G UPGraph N V K V N M V N K ¬ N M K
33 df-nel N M K ¬ N M K
34 32 33 sylibr G UPGraph N V K V N M V N K N M K
35 34 adantr G UPGraph N V K V N M V N K M G NeighbVtx K N M K
36 neleq2 e = M K N e N M K
37 36 3 elrab2 M K F M K E N M K
38 17 35 37 sylanbrc G UPGraph N V K V N M V N K M G NeighbVtx K M K F
39 1 2 3 4 upgrres1 G UPGraph N V S UPGraph
40 39 3ad2ant1 G UPGraph N V K V N M V N K S UPGraph
41 simp2 G UPGraph N V K V N M V N K K V N
42 18 8 sylbb M V N K M V N M K
43 42 3ad2ant3 G UPGraph N V K V N M V N K M V N M K
44 40 41 43 jca31 G UPGraph N V K V N M V N K S UPGraph K V N M V N M K
45 44 adantr G UPGraph N V K V N M V N K M G NeighbVtx K S UPGraph K V N M V N M K
46 1 2 3 4 upgrres1lem2 Vtx S = V N
47 46 eqcomi V N = Vtx S
48 edgval Edg S = ran iEdg S
49 1 2 3 4 upgrres1lem3 iEdg S = I F
50 49 rneqi ran iEdg S = ran I F
51 rnresi ran I F = F
52 48 50 51 3eqtrri F = Edg S
53 47 52 nbupgrel S UPGraph K V N M V N M K M S NeighbVtx K M K F
54 45 53 syl G UPGraph N V K V N M V N K M G NeighbVtx K M S NeighbVtx K M K F
55 38 54 mpbird G UPGraph N V K V N M V N K M G NeighbVtx K M S NeighbVtx K
56 55 ex G UPGraph N V K V N M V N K M G NeighbVtx K M S NeighbVtx K