Step |
Hyp |
Ref |
Expression |
1 |
|
nbupgrres.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nbupgrres.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
nbupgrres.f |
⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } |
4 |
|
nbupgrres.s |
⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 |
5 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐺 ∈ UPGraph ) |
6 |
|
eldifi |
⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝐾 ∈ 𝑉 ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐾 ∈ 𝑉 ) |
8 |
|
eldifsn |
⊢ ( 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) ↔ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) |
9 |
|
eldifi |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑀 ∈ 𝑉 ) |
10 |
9
|
anim1i |
⊢ ( ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
11 |
8 10
|
sylbi |
⊢ ( 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
12 |
|
difpr |
⊢ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) |
13 |
11 12
|
eleq2s |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
15 |
1 2
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐸 ) ) |
16 |
5 7 14 15
|
syl21anc |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐸 ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝑀 , 𝐾 } ∈ 𝐸 ) |
18 |
12
|
eleq2i |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) ) |
19 |
|
eldifsn |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ) |
20 |
19
|
anbi1i |
⊢ ( ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) ) |
21 |
18 8 20
|
3bitri |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) ) |
22 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) → 𝑀 ≠ 𝑁 ) |
23 |
22
|
necomd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) → 𝑁 ≠ 𝑀 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) → 𝑁 ≠ 𝑀 ) |
25 |
21 24
|
sylbi |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → 𝑁 ≠ 𝑀 ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ≠ 𝑀 ) |
27 |
|
eldifsn |
⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) ) |
28 |
|
simpr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) → 𝐾 ≠ 𝑁 ) |
29 |
28
|
necomd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) → 𝑁 ≠ 𝐾 ) |
30 |
27 29
|
sylbi |
⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ≠ 𝐾 ) |
31 |
30
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ≠ 𝐾 ) |
32 |
26 31
|
nelprd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ¬ 𝑁 ∈ { 𝑀 , 𝐾 } ) |
33 |
|
df-nel |
⊢ ( 𝑁 ∉ { 𝑀 , 𝐾 } ↔ ¬ 𝑁 ∈ { 𝑀 , 𝐾 } ) |
34 |
32 33
|
sylibr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ∉ { 𝑀 , 𝐾 } ) |
35 |
34
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → 𝑁 ∉ { 𝑀 , 𝐾 } ) |
36 |
|
neleq2 |
⊢ ( 𝑒 = { 𝑀 , 𝐾 } → ( 𝑁 ∉ 𝑒 ↔ 𝑁 ∉ { 𝑀 , 𝐾 } ) ) |
37 |
36 3
|
elrab2 |
⊢ ( { 𝑀 , 𝐾 } ∈ 𝐹 ↔ ( { 𝑀 , 𝐾 } ∈ 𝐸 ∧ 𝑁 ∉ { 𝑀 , 𝐾 } ) ) |
38 |
17 35 37
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝑀 , 𝐾 } ∈ 𝐹 ) |
39 |
1 2 3 4
|
upgrres1 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑆 ∈ UPGraph ) |
41 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) |
42 |
18 8
|
sylbb |
⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) |
43 |
42
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) |
44 |
40 41 43
|
jca31 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) ) |
46 |
1 2 3 4
|
upgrres1lem2 |
⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
47 |
46
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
48 |
|
edgval |
⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) |
49 |
1 2 3 4
|
upgrres1lem3 |
⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
50 |
49
|
rneqi |
⊢ ran ( iEdg ‘ 𝑆 ) = ran ( I ↾ 𝐹 ) |
51 |
|
rnresi |
⊢ ran ( I ↾ 𝐹 ) = 𝐹 |
52 |
48 50 51
|
3eqtrri |
⊢ 𝐹 = ( Edg ‘ 𝑆 ) |
53 |
47 52
|
nbupgrel |
⊢ ( ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) → ( 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐹 ) ) |
54 |
45 53
|
syl |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐹 ) ) |
55 |
38 54
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) |
56 |
55
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) → 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) ) |