Metamath Proof Explorer


Theorem ndmafv2nrn

Description: The value of a class outside its domain is not in the range, compare with ndmfv . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndmafv2nrn ¬AdomFF''''AranF

Proof

Step Hyp Ref Expression
1 orc ¬AdomF¬AdomF¬FunFA
2 ianor ¬AdomFFunFA¬AdomF¬FunFA
3 df-dfat FdefAtAAdomFFunFA
4 2 3 xchnxbir ¬FdefAtA¬AdomF¬FunFA
5 1 4 sylibr ¬AdomF¬FdefAtA
6 ndfatafv2nrn ¬FdefAtAF''''AranF
7 5 6 syl ¬AdomFF''''AranF