Metamath Proof Explorer


Theorem ndmafv2nrn

Description: The value of a class outside its domain is not in the range, compare with ndmfv . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndmafv2nrn ¬ A dom F F '''' A ran F

Proof

Step Hyp Ref Expression
1 orc ¬ A dom F ¬ A dom F ¬ Fun F A
2 ianor ¬ A dom F Fun F A ¬ A dom F ¬ Fun F A
3 df-dfat F defAt A A dom F Fun F A
4 2 3 xchnxbir ¬ F defAt A ¬ A dom F ¬ Fun F A
5 1 4 sylibr ¬ A dom F ¬ F defAt A
6 ndfatafv2nrn ¬ F defAt A F '''' A ran F
7 5 6 syl ¬ A dom F F '''' A ran F