Metamath Proof Explorer


Theorem ndmaovrcl

Description: Reverse closure law, in contrast to ndmovrcl where it is required that the operation's domain doesn't contain the empty set ( -. (/) e. S ), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypothesis ndmaov.1 domF=S×S
Assertion ndmaovrcl AFBSASBS

Proof

Step Hyp Ref Expression
1 ndmaov.1 domF=S×S
2 aovvdm AFBSABdomF
3 opelxp ABS×SASBS
4 3 biimpi ABS×SASBS
5 4 1 eleq2s ABdomFASBS
6 2 5 syl AFBSASBS