Metamath Proof Explorer


Theorem neg11

Description: Negative is one-to-one. (Contributed by NM, 8-Feb-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion neg11 ABA=BA=B

Proof

Step Hyp Ref Expression
1 negeq A=BA=B
2 negneg AA=A
3 negneg BB=B
4 2 3 eqeqan12d ABA=BA=B
5 1 4 imbitrid ABA=BA=B
6 negeq A=BA=B
7 5 6 impbid1 ABA=BA=B