Metamath Proof Explorer


Theorem negcon1d

Description: Contraposition law for unary minus. Deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 φA
negcon1d.2 φB
Assertion negcon1d φA=BB=A

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 negcon1d.2 φB
3 negcon1 ABA=BB=A
4 1 2 3 syl2anc φA=BB=A