Metamath Proof Explorer


Theorem negeq0

Description: A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion negeq0 AA=0A=0

Proof

Step Hyp Ref Expression
1 0cn 0
2 neg11 A0A=0A=0
3 1 2 mpan2 AA=0A=0
4 neg0 0=0
5 4 eqeq2i A=0A=0
6 3 5 bitr3di AA=0A=0