Metamath Proof Explorer


Theorem negid

Description: Addition of a number and its negative. (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion negid AA+A=0

Proof

Step Hyp Ref Expression
1 df-neg A=0A
2 1 oveq2i A+A=A+0-A
3 0cn 0
4 pncan3 A0A+0-A=0
5 3 4 mpan2 AA+0-A=0
6 2 5 eqtrid AA+A=0