Metamath Proof Explorer


Theorem negne0bd

Description: A number is nonzero iff its negative is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 φA
Assertion negne0bd φA0A0

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 1 negeq0d φA=0A=0
3 2 necon3bid φA0A0