Metamath Proof Explorer


Theorem negreb

Description: The negative of a real is real. (Contributed by NM, 11-Aug-1999) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion negreb A A A

Proof

Step Hyp Ref Expression
1 renegcl A A
2 negneg A A = A
3 2 eleq1d A A A
4 1 3 syl5ib A A A
5 renegcl A A
6 4 5 impbid1 A A A