Metamath Proof Explorer


Theorem negsubdi3d

Description: Distribution of negative over subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses negsubdi3d.1 φA
negsubdi3d.2 φB
Assertion negsubdi3d φAB=-A-B

Proof

Step Hyp Ref Expression
1 negsubdi3d.1 φA
2 negsubdi3d.2 φB
3 1 2 negsubdi2d φAB=BA
4 1 2 neg2subd φ-A-B=BA
5 3 4 eqtr4d φAB=-A-B