Metamath Proof Explorer


Theorem nelrnfvne

Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion nelrnfvne Fun F X dom F Y ran F F X Y

Proof

Step Hyp Ref Expression
1 fvelrn Fun F X dom F F X ran F
2 elnelne2 F X ran F Y ran F F X Y
3 1 2 stoic3 Fun F X dom F Y ran F F X Y