Metamath Proof Explorer


Theorem nemnftgtmnft

Description: An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion nemnftgtmnft A*A−∞−∞<A

Proof

Step Hyp Ref Expression
1 simpr A*A−∞A−∞
2 1 neneqd A*A−∞¬A=−∞
3 ngtmnft A*A=−∞¬−∞<A
4 3 adantr A*A−∞A=−∞¬−∞<A
5 2 4 mtbid A*A−∞¬¬−∞<A
6 notnotb −∞<A¬¬−∞<A
7 5 6 sylibr A*A−∞−∞<A