Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Predicate calculus with equality:  Tarski's system S2 (1 rule, 6 schemes) Axiom scheme ax-4 (Quantified Implication) nfbid  
				
		 
		
			
		 
		Description:   If in a context x  is not free in ps  and ch  , then it is not
       free in ( ps <-> ch )  .  (Contributed by Mario Carneiro , 24-Sep-2016)   (Proof shortened by Wolf Lammen , 29-Dec-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfbid.1    ⊢   φ   →   Ⅎ  x   ψ          
					 
					
						nfbid.2    ⊢   φ   →   Ⅎ  x   χ          
					 
				
					Assertion 
					nfbid    ⊢   φ   →   Ⅎ  x    ψ   ↔   χ           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfbid.1   ⊢   φ   →   Ⅎ  x   ψ          
						
							2 
								
							 
							nfbid.2   ⊢   φ   →   Ⅎ  x   χ          
						
							3 
								
							 
							dfbi2   ⊢    ψ   ↔   χ    ↔     ψ   →   χ    ∧    χ   →   ψ          
						
							4 
								1  2 
							 
							nfimd   ⊢   φ   →   Ⅎ  x    ψ   →   χ           
						
							5 
								2  1 
							 
							nfimd   ⊢   φ   →   Ⅎ  x    χ   →   ψ           
						
							6 
								4  5 
							 
							nfand   ⊢   φ   →   Ⅎ  x     ψ   →   χ    ∧    χ   →   ψ            
						
							7 
								3  6 
							 
							nfxfrd   ⊢   φ   →   Ⅎ  x    ψ   ↔   χ