Metamath Proof Explorer


Theorem nfbid

Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)

Ref Expression
Hypotheses nfbid.1 φ x ψ
nfbid.2 φ x χ
Assertion nfbid φ x ψ χ

Proof

Step Hyp Ref Expression
1 nfbid.1 φ x ψ
2 nfbid.2 φ x χ
3 dfbi2 ψ χ ψ χ χ ψ
4 1 2 nfimd φ x ψ χ
5 2 1 nfimd φ x χ ψ
6 4 5 nfand φ x ψ χ χ ψ
7 3 6 nfxfrd φ x ψ χ