Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
nfbid
Metamath Proof Explorer
Description: If in a context x is not free in ps and ch , then it is not
free in ( ps <-> ch ) . (Contributed by Mario Carneiro , 24-Sep-2016) (Proof shortened by Wolf Lammen , 29-Dec-2017)
Ref
Expression
Hypotheses
nfbid.1
⊢ φ → Ⅎ x ψ
nfbid.2
⊢ φ → Ⅎ x χ
Assertion
nfbid
⊢ φ → Ⅎ x ψ ↔ χ
Proof
Step
Hyp
Ref
Expression
1
nfbid.1
⊢ φ → Ⅎ x ψ
2
nfbid.2
⊢ φ → Ⅎ x χ
3
dfbi2
⊢ ψ ↔ χ ↔ ψ → χ ∧ χ → ψ
4
1 2
nfimd
⊢ φ → Ⅎ x ψ → χ
5
2 1
nfimd
⊢ φ → Ⅎ x χ → ψ
6
4 5
nfand
⊢ φ → Ⅎ x ψ → χ ∧ χ → ψ
7
3 6
nfxfrd
⊢ φ → Ⅎ x ψ ↔ χ