Metamath Proof Explorer


Theorem nfcriOLD

Description: Obsolete version of nfcri as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) Avoid ax-12 . (Revised by SN, 26-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1 _xA
Assertion nfcriOLD xyA

Proof

Step Hyp Ref Expression
1 nfcrii.1 _xA
2 eleq1w z=yzAyA
3 2 nfbidv z=yxzAxyA
4 df-nfc _xAzxzA
5 4 biimpi _xAzxzA
6 df-nf xzAxzAxzA
7 6 albii zxzAzxzAxzA
8 eleq1w z=wzAwA
9 8 exbidv z=wxzAxwA
10 8 albidv z=wxzAxwA
11 9 10 imbi12d z=wxzAxzAxwAxwA
12 11 spw zxzAxzAxzAxzA
13 7 12 sylbi zxzAxzAxzA
14 1 5 13 mp2b xzAxzA
15 14 nfi xzA
16 3 15 chvarvv xyA