Metamath Proof Explorer


Theorem nfexd

Description: If x is not free in ps , then it is not free in E. y ps . (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nfald.1 y φ
nfald.2 φ x ψ
Assertion nfexd φ x y ψ

Proof

Step Hyp Ref Expression
1 nfald.1 y φ
2 nfald.2 φ x ψ
3 df-ex y ψ ¬ y ¬ ψ
4 2 nfnd φ x ¬ ψ
5 1 4 nfald φ x y ¬ ψ
6 5 nfnd φ x ¬ y ¬ ψ
7 3 6 nfxfrd φ x y ψ